PRUNASIN, THE CYANOGENIC GLYCOSIDE IN AMELANCHIER ALNIFOLIA

WALTER MAJAK*, ROBERT J. BOSE† and DEE A. QUINTON*

*Research Station, Agriculture Canada, Kamloops, B.C.;; † Vancouver Laboratory, Fisheries and Marine Service, 6640 N.W. Marine Drive, Vancouver, B.C., Canada

(Received 25 November 1977)

Key Word Index—Amelanchier alnifolia; Rosaceae; Saskatoon serviceberry; cyanogenic glycoside; prunasin.

The proportion of Saskatoon serviceberry (Amelanchier alnifolia Nutt.) in the diet of free-ranging mule deer (Odocoileus hemionus hemionus) varies from low to moderate [1, 2]. Nevertheless, field observations on the plant in the Interior of British Columbia indicate a high degree of browsing [3]. Penned, mature mule deer, however, ingesting 1 kg fr. wt per day A. alnifolia went off their feed and developed shortness of breath and lack of muscle control after 7 days on the diet in early March of 1977. The experimental animals expired within 24 hr of the first indication of any sickness, despite an intense effort to save them [4]. Amelanchier species are not found in lists of toxic plants [5, 6] and, in fact, A. alnifolia is a recommended species for habitat improvement plantings in game management [7, 8].

Samples of the above feed gave a positive HCN test with picrate paper. Cyanogenesis has been reported in eight species of *Amelanchier* [9, 10] including seeds of *A. alnifolia*, but the cyanogenic compound(s) have not been characterized. This present work describes the isolation and identification of prunasin, the cyanogenic glycoside in Saskatoon serviceberry.

The isolate, obtained as 0.15% fr. wt A. alnifolia twigs and buds, yielded HCN, glucose and benzaldehyde following treatment with almond emulsin. HCN was identified by the picrate paper test, glucose by the panisidine phthalate reagent following PC, and benzaldehyde by GLC. The isolate co-chromatographed with an authentic sample of prunasin (courtesy Dr Eric E. Conn) in five solvents. The TMS derivative of our isolate cochromatographed with the TMS derivative of the reference sample of prunasin using the GLC conditions described by Butterfield et al. [11]. These GLC conditions resolved TMS-prunasin from TMS-sambunigrin. Sambunigrin, the diastereoisomer of prunasin, was readily generated from prunasin by treatment with 0.01 N NH₄OH for 1 hr at room temp. [12, 13]. The TLC purified material, twice recrystallized from EtOAc, melted at 144-148° (lit. 148-151° [14] and 147-148° [15]). Dissolved in water the isolate had $[\alpha]_D^{25}$ -24.0, c, 3.07 (lit. -30.1 [14] and -27.2 [15]). The ¹H-PMR spectrum of the D₂O exchanged product was in complete agreement with the assigned structure, giving a 5H multiplet δ 7.57 (aromatic), a 1H singlet δ 5.89 (cyanohydrin), 1H doublet δ 4.59, J = 6 Hz (anomeric), and the remaining 6H of the hexose moiety.

EXPERIMENTAL

Amelanchier alnifolia (100 g fr. wt, twigs and buds) was collected on 4 April, 1977, near Kamloops, B.C., and homogenized with 500 ml hot EtOH. The filtrate was concd, fractionated on activated coconut charcoal [16] and the fraction containing prunasin was eluted with 21. 50 % C_6H_6 in EtOH. This fraction was concd to dryness, redissolved in 15 ml H_2O , applied to a polyamide-CC₆ (Macheray, Nagel and Co.) column (15 × 3 cm) equilibrated in H_2O and the prunasin fraction was eluted with 200 ml H_2O . This eluate was concd, applied to 10 Avicel-Si gel 7 (Baker No. 3406) TLC plates (1:1, 20 × 40cm, 1 mm thick) and chromatographed in EtOAc. The prunasin band (located initially with the picrate paper sandwich test and subsequently by UV absorbance) was eluted with EtOH, concd and crystallized twice in EtOAc.

REFERENCES

- Willms, W., McLean, A. and Ritcey, R. (1976) Can. J. Anim. Sci. 56, 531.
- Kufeld, R. C., Wallmo, O. C. and Feddema, C. (1973) USDA Forest Service Research Paper RM-111, Fort Collins, Colorado.
- 3. Willms, W. personal communication.
- 4. Quinton, D. A. unpublished results
- Kingsbury, J. M. (1964) Poisonous Plants of The United States and Canada. Prentice Hall, Englewood Cliffs, New Jersey.
- Garner, R. J. (1967) Veterinary Toxicology 3rd Edn, part 6. Baillière, Tindall & Cassell, London.
- 7. Martin, C. A., Zim, H. S. and Nelson, A. L. (1951) American Wildlife and Plants p. 323. McGraw-Hill, New York.
- Plummer, A. P., Christensen, D. R. and Monsen, S. B. (1968)
 Restoring Big Game Range in Utah. Publication No. 68-3,
 Utah Division of Fish and Game, Ephraim, Utah.
- Gibbs, R. D. (1974) Chemotaxonomy of Flowering Plants Vol. III, p. 1621. McGill-Queens University Press, Montreal.
- 10. Seigler, D. S. (1976) Econ. Botany 30, 395.
- 11. Butterfield, C. S., Conn. E. E. and Seigler, D. S. (1975) Phytochemistry 14, 993.
- Secor, J. B., Conn. E. E., Dunn, J. E. and Seigler, D. S. (1976) *Phytochemistry* 15, 1703.
- 13. Nahrstedt, A. (1973) Planta Med. 24, 83.
- 14. Seigler, D. S. (1975) Phytochemistry 14, 9.
- 15. Takaishi, K. and Kuwajima, H. (1976) Phytochemistry 15,
- Bleichert, E. F., Neish, A. C. and Towers, G. H. N. (1966) Biosynthesis of Aromatic Compounds (Billek, G. ed.) Chap. 12. Pergamon Press, New York.

[‡] Contribution no. 274.